Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570362

RESUMO

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Assuntos
Proteínas de Transporte , Infecções por Vírus Epstein-Barr , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Herpesvirus Humano 4 , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397010

RESUMO

A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 ß-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Receptores Acoplados a Proteínas G , Humanos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Receptores ErbB/metabolismo , Ligantes , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
4.
Eur J Pharmacol ; 971: 176392, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365107

RESUMO

The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.


Assuntos
Lesão Pulmonar Aguda , Dissecção Aórtica , MicroRNAs , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Células Epiteliais Alveolares/metabolismo , Proteína ADAM17/genética , Angiotensina II/farmacologia , Angiotensina II/metabolismo , MicroRNAs/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo
5.
Front Biosci (Landmark Ed) ; 29(1): 44, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287826

RESUMO

BACKGROUND: Current studies have demonstrated that disintegrin and metalloproteinase 17 (ADAM17) plays a critical role in the pathogenesis of sepsis. MicroRNA (miR)-145 is known to control immune responses as an anti-inflammatory modulatory molecule. However, a fundamental understanding of how miR-145 regulates ADAM17 and, more broadly, sepsis-induced inflammatory response remains unknown. METHODS: We used western blotting and quantitative real-time PCR (qRT-PCR) to measure expression levels of ADAM17 and miR-145. Enzyme-linked immunosorbent assays (ELISA) were performed to measure cytokine production. To determine if ADAM17 is a target gene of miR-145, bioinformatics analyses and luciferase reporter assays were conducted. The impacts of ADAM17 and miR-145 on sepsis-induced inflammatory responses were accessed in vitro using human umbilical endothelial cells (HUVECs) treated with lipopolysaccharide (LPS). Sepsis-induced inflammatory response was measured in vivo using a polymicrobial septic mouse model induced by cecal ligation and puncture (CLP) with pre-injection of a miR-145 agomir. RESULTS: In HUVECs treated with LPS, miR-145 expression was downregulated and miR-145 negatively regulated ADAM17 expression through direct binding to the ADAM17 transcript 3'-UTR. MiR-145 overexpression markedly reduced LPS-induced inflammatory cytokine production by targeting ADAM17 in HUVECs. In comparison to CLP-induced septic mice treated with a control agomir, treatment with a miR-145 agomir significantly reduced the expression of ADAM17, numerous downstream cytokines such as IL-6, TNF-α, IL-1ß and MCP-1, and the endothelial injury factors ICAM-1, VCAM-1. The miR-145 agomir also alleviated acute lung and kidney injury and improved the survival rate of septic mice. CONCLUSIONS: This study showed that miR-145, by specifically targeting ADAM17, negatively regulates sepsis-induced inflammatory responses and vascular endothelial injury, and ultimately improved organ injury and survival during sepsis. The underlying mechanism for the regulation of ADAM17 expression by miR-145 and sepsis-induced inflammatory reactions may offer sepsis patients a novel therapeutic option.


Assuntos
Proteína ADAM17 , MicroRNAs , Sepse , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Apoptose , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
6.
FEBS J ; 291(1): 10-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540030

RESUMO

The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.


Assuntos
Proteínas ADAM , Neoplasias , Humanos , Proteínas ADAM/metabolismo , Proteínas ADAM/uso terapêutico , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Endopeptidases , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteínas de Membrana/metabolismo , Inflamação
7.
Int J Oncol ; 64(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063205

RESUMO

The homeobox (HOX) gene family plays a fundamental role in carcinogenesis. However, the oncogenic mechanism of HOXC10 in head and neck squamous cell carcinoma (HNSCC) remains unclear. In the present study, it was revealed that HOXC10 expression was significantly higher in HNSCC tissues than in adjacent tissues, and a high level of HOXC10 was closely associated with worse clinical outcomes. HOXC10 overexpression promoted HNSCC cell proliferation, migration, and invasion, both in vitro and in vivo. Mechanistically, chromatin immunoprecipitation sequencing revealed that HOXC10 drove the transcriptional activation of a disintegrin and metalloproteinase 17 (ADAM17), and the ADAM17/epidermal growth factor receptor (EGFR)/ERK1/2 signaling pathway facilitating the proliferation of HNSCC. Furthermore, mass spectrometric analysis indicated that HOXC10 interacted with ribosomal protein S15A (RPS15A) and enhanced RPS15A protein expression, activating the Wnt/ß­catenin pathway and contributing to invasion and metastasis of HNSCC. Additionally, the methylated RNA immune precipitation and RNA antisense purification assays showed that N6­methyladenosine (m6A) writer, methyltransferase­like 3, catalyzed m6A modification of the HOXC10 transcript, m6A reader insulin like growth factor 2 mRNA binding protein (IGF2BP)1 and IGF2BP3 involved in recognizing and stabilizing m6A­tagged HOXC10 mRNA. In summary, the present study identified HOXC10 as a promising candidate oncogene in HNSCC. The m6A modification­mediated HOXC10 promoted proliferation, migration, and invasion of HNSCC through co­activation of ADAM17/EGFR and Wnt/ß­catenin signaling, providing a novel diagnostic and prognostic biomarker and a potential therapeutic target for HNSCC.


Assuntos
Proteína ADAM17 , Genes Homeobox , Neoplasias de Cabeça e Pescoço , Proteínas de Homeodomínio , Humanos , Proteína ADAM17/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Homeodomínio/metabolismo , RNA , RNA Mensageiro , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética , 60697
8.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069391

RESUMO

Hepatocellular carcinoma (HCC) is the deadliest malignant tumour worldwide. The metalloproteinase ADAM17 is associated with tumour formation and development; however, its significance in HCC is unclear. This study aimed to investigate the role of ADAM17 in HCC and the correlation between its expression and immune cell infiltration. ADAM17 expression was analysed in pan-cancer and HCC tissues using The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Kaplan-Meier survival analysis displayed a negative association between ADAM17 expression and the overall survival of patients with HCC. High ADAM17 expression was linked to poor tumour/node (T/N) stage and alpha fetoprotein (AFP) levels. Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes analyses revealed the enrichment of several pathways, including epithelial-mesenchymal transition, inflammatory response, Hedgehog, and KRAS signalling, in patients with upregulated ADAM17. ADAM17 was shown to be positively correlated with immune cell infiltration and immune checkpoint expression via the Tumour Immune Estimation Resource (TIMER) database and immunohistochemistry analyses. Protein-protein interaction (PPI) network analysis revealed that ADAM17 plays a core role in cancer development and immune evasion. In vitro and in vivo experiments demonstrated that ADAM17 influences HCC growth and metastasis. In conclusion, ADAM17 is upregulated in most cancers, particularly HCC, and is critical in the development and immune evasion of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais , Bases de Dados Factuais , Proteína ADAM17/genética
9.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958866

RESUMO

High levels of ADAM17 activity have emerged as an important mediator in severe COVID-19. This study aims to characterize eventual causal relationships between ADAM17 and COVID-19. Using Mendelian randomization analyses, we examined the causal effects of circulating ADAM17 on COVID-19 outcomes using summary statistics from large, genome-wide association studies of ADAM17 (up to 35,559 individuals) from the Icelandic Cancer Project and deCODE genetics, as well as critically ill COVID-19 patients (cases: 13,769; controls: 1,072,442), hospitalized COVID-19 patients (cases: 32,519; controls: 2,062,805) and reported SARS-CoV-2 infections (cases: 122,616; controls: 2,475,240) from the COVID-19 Host Genetics Initiative. The Mendelian randomization (MR) analyses demonstrated that a 1 standard deviation increase in genetically determined circulating ADAM17 (extracellular domain) was associated with an increased risk of developing critical ill COVID-19 (odds ratio [OR] = 1.26, 95% confidence interval [CI]:1.03-1.55). The multivariable MR analysis suggested a direct causal role of circulating ADAM17 (extracellular domain) in the risk of developing critical COVID-19 (OR = 1.09; 95% CI:1.01-1.17) when accounting for body mass index. No causal effect for the cytoplasmic domain of ADAM17 on COVID-19 was observed. Our results suggest that an increased genetic susceptibility to elevated levels of circulating ADAM17 (extracellular domain) is associated with a higher risk of suffering from severe COVID-19, strengthening the idea that the timely selective inhibition of ADAM17 could be a potential therapeutic target worthy of investigation.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , SARS-CoV-2 , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único , Proteína ADAM17/genética
10.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561786

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Assuntos
Citomegalovirus , Fator de Necrose Tumoral alfa , Humanos , Citomegalovirus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteoma/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Proteômica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Citocinas/metabolismo , Membrana Celular/metabolismo , Metaloproteases/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Virais/metabolismo
11.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566005

RESUMO

BACKGROUND: Homozygosity for the C allele of the -1T>C single nucleotide polymorphism (SNP) of the CD40 gene (rs1883832) is associated with susceptibility to coronary heart disease (CHD), enhanced CD40 expression, and shedding. The disintegrin metalloprotease ADAM17 can cleave various cell surface proteins. This study investigates an association between ADAM17-mediated CD40 shedding and inflammation in CC genotype human endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVEC) carrying the CC genotype were stimulated with soluble CD40 ligand (sCD40L) or tumor necrosis factor-α (TNFα). Messenger RNA and protein expression were determined with standard methods. Levels of high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), and sCD40 in plasma samples from patients with CHD were assessed using ELISA. RESULTS: ADAM17 surface abundance was elevated following stimulation with CD40L and TNFα just as its regulator iRhom2. Inhibition of ADAM17 prevented TNFα-induced sCD40 and soluble vascular cell adhesion molecule-1 release into the conditioned medium and reinforced CD40 surface abundance. Secondary to inhibition of ADAM17, stimulation with CD40L or TNFα upregulated monocyte chemoattractant protein-1 mRNA and protein. Levels of sCD40 and the inflammatory biomarkers hs-CRP and IL-6 were positively correlated in the plasma of patients with CHD. CONCLUSIONS: We provide a mechanism by which membrane-bound CD40 is shed from the endothelial cell surface by ADAM17, boosting sCD40 formation and limiting downstream CD40 signaling. Soluble CD40 may represent a robust biomarker for CHD, especially in conjunction with homozygosity for the C allele of the -1T>C SNP of the CD40 gene.


Assuntos
Proteína ADAM17 , Antígenos CD40 , Humanos , Proteína ADAM17/genética , Proteína C-Reativa , Antígenos CD40/metabolismo , Ligante de CD40/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia
12.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37282854

RESUMO

Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.


Assuntos
Ceratodermia Palmar e Plantar Difusa , Ceratodermia Palmar e Plantar , Neoplasias , Animais , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/genética , Ceratodermia Palmar e Plantar/genética , Proteínas de Membrana/genética
13.
Biomater Adv ; 152: 213516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348330

RESUMO

In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.


Assuntos
Secretases da Proteína Precursora do Amiloide , Pulmão , Humanos , Camundongos , Animais , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Pulmão/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteases/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
14.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175410

RESUMO

Glioblastoma (GBM) is a malignant brain tumor, commonly treated with temozolomide (TMZ). Upregulation of A disintegrin and metalloproteinases (ADAMs) is correlated to malignancy; however, whether ADAMs modulate TMZ sensitivity in GBM cells remains unclear. To explore the role of ADAMs in TMZ resistance, we analyzed changes in ADAM expression following TMZ treatment using RNA sequencing and noted that ADAM17 was markedly upregulated. Hence, we established TMZ-resistant cell lines to elucidate the role of ADAM17. Furthermore, we evaluated the impact of ADAM17 knockdown on TMZ sensitivity in vitro and in vivo. Moreover, we predicted microRNAs upstream of ADAM17 and transfected miRNA mimics into cells to verify their effects on TMZ sensitivity. Additionally, the clinical significance of ADAM17 and miRNAs in GBM was analyzed. ADAM17 was upregulated in GBM cells under serum starvation and TMZ treatment and was overexpressed in TMZ-resistant cells. In in vitro and in vivo models, ADAM17 knockdown conferred greater TMZ sensitivity. miR-145 overexpression suppressed ADAM17 and sensitized cells to TMZ. ADAM17 upregulation and miR-145 downregulation in clinical specimens are associated with disease progression and poor prognosis. Thus, miR-145 enhances TMZ sensitivity by inhibiting ADAM17. These findings offer insights into the development of therapeutic approaches to overcome TMZ resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Regulação para Baixo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
15.
J Neurovirol ; 29(3): 283-296, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37185939

RESUMO

A disintegrin and metalloproteinases (ADAMs) are involved in multiple neurodegenerative diseases. However, the roles and mechanisms of ADAMs in HIV-associated neurocognitive disorder (HAND) remain unclear. Transactivator of transcription (Tat) induces inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. In this study, we determined that ADAM17 expression was upregulated during soluble Tat stimulus in HEB astroglial cells. Inhibition of ADAM17 suppressed Tat-induced pro-inflammatory cytokines production and rescued the astrocytes-derived conditioned media (ACM)-mediated SH-SY5Y neural cells apoptosis. Moreover, ADAM17 mediated Tat-triggered inflammatory response in a NF-κB-dependent manner. Conversely, Tat induced ADAM17 expression via NF-κB signaling pathway. In addition, pharmacological inhibition of NF-κB signaling inhibited Tat-induced inflammatory response, which could be rescued by overexpression of ADAM17. Taken together, our study clarifies the potential role of the ADAM17/NF-κB feedback loop in Tat-induced inflammatory response in astrocytes and the ACM-mediated neuronal death, which could be a novel therapeutic target for relief of HAND.


Assuntos
HIV-1 , Neuroblastoma , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , HIV-1/metabolismo , Astrócitos/metabolismo , Transativadores/metabolismo , Retroalimentação , Neuroblastoma/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
16.
Ecotoxicol Environ Saf ; 257: 114950, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099959

RESUMO

Silicosis is one of several potentially fatal occupational pathologies caused by the prolonged inhalation of respirable crystalline silica. Previous studies have shown that lung epithelial-mesenchymal transition (EMT) plays a significant role in the fibrosis effect of silicosis. Human umbilical cord mesenchymal stem cells-derived Extracellular vesicles (hucMSC-EVs) have attracted great interest as a potential therapy of EMT and fibrosis-related diseases. However, the potential effects of hucMSC-EVs in inhibiting EMT in silica-induced fibrosis, as well as its underlying mechanisms, remain largely unknown. In this study, we used the EMT model in MLE-12 cells and observed the effects and mechanism of hucMSC-EVs inhibition of EMT. The results revealed that hucMSC-EVs can indeed inhibit EMT. MiR-26a-5p was highly enriched in hucMSC-EVs but was down-regulated in silicosis mice. We found that miR-26a-5p in hucMSC-EVs was over-expressed after transfecting miR-26a-5p expressing lentivirus vectors into hucMSCs. Subsequently, we explored if miR-26a-5p, attained from hucMSC-EVs, was involved in inhibiting EMT in silica-induced lung fibrosis. Our findings suggested that hucMSC-EVs could deliver miR-26a-5p into MLE-12 cells and cause the inhibition of the Adam17/Notch signalling pathway to ameliorate EMT in silica-induced pulmonary fibrosis. These findings might represent a novel insight into treating silicosis fibrosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Transição Epitelial-Mesenquimal , Dióxido de Silício/toxicidade , Fibrose , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Silicose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/genética
17.
Apoptosis ; 28(5-6): 783-795, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36881291

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in men worldwide. Actin-related protein 2/3 complex subunit 5 (ARPC5) has been validated as a critical regulator in several kinds of human tumors. However, whether ARPC5 is implicated in PCa progression remains largely unknown. METHODS: PCa specimens and PCa cell lines were obtained for detecting gene expressions using western blot and quantitative reverse transcriptase PCR (qRT-PCR). PCa cells transfected with ARPC5 shRNA or a disintegrin and metalloprotease 17 (ADAM17) overexpressed plasmids were harvested for assessing cell proliferation, migration and invasion by using cell counting kit-8 (CCK-8), colony formation and transwell assays, respectively. The interaction relationship between molecules was testified with chromatin immunoprecipitation and luciferase reporter assay. Xenograft mice model was conducted for confirming the role of ARPC5/ADAM17 axis in vivo. RESULTS: Upregulated ARPC5 was observed in PCa tissues and cells, as well as forecasted poor prognosis of PCa patients. Depletion of ARPC5 inhibited PCa cell proliferation, migration and invasion. Krüppel-like factor 4 (KLF4) was identified to be a transcriptional activator of ARPC5 via binding with its promoter region. Furthermore, ADAM17 served as a downstream effector of ARPC5. ADAM17 overexpression overturned ARPC5 knockdown-induced repressive impacts on PCa progression in vitro and in vivo. CONCLUSION: Collectively, ARPC5 was activated by KLF4 and upregulated ADAM17 to promote PCa progression, which might act as a promising therapeutic target and prognostic biomarker for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , MicroRNAs/genética , Fator 4 Semelhante a Kruppel , Linhagem Celular Tumoral , Apoptose , Neoplasias da Próstata/patologia , Oncogenes , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813090

RESUMO

Periostin (POSTN) is a matricellular protein that was originally identified in osteoblasts. Past studies have shown that POSTN is also preferentially expressed in cancer-associated fibroblasts (CAFs) in various types of cancer. We previously demonstrated that the increased expression of POSTN in stromal tissues is associated with an unfavorable clinical outcome in esophageal squamous cell carcinoma (ESCC) patients. In this study, we aimed to elucidate the role of POSNT in ESCC progression and its underlying molecular mechanism. We found that POSTN is predominantly produced by CAFs in ESCC tissues, and that CAFs-cultured media significantly promoted the migration, invasion, proliferation, and colony formation of ESCC cell lines in a POSTN-dependent manner. In ESCC cells, POSTN increased the phosphorylation of ERK1/2 and stimulated the expression and activity of a disintegrin and metalloproteinase 17 (ADAM17), which is critically involved in tumorigenesis and tumor progression. The effects of POSTN on ESCC cells were suppressed by interfering with the binding of POSTN to integrin αvß3 or αvß5 using neutralizing antibody against POSTN. Taken together, our data show that CAFs-derived POSTN stimulates ADAM17 activity through activation of the integrin αvß3 or αvß5-ERK1/2 pathway and thereby contributes to the progression of ESCC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Esofágicas/metabolismo , Integrina alfaVbeta3/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
19.
Biomed Pharmacother ; 159: 114225, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621146

RESUMO

BACKGROUND: To predict primary failure of infliximab (IFX) therapy in Crohn's disease (CD) and to identify patients who maintain long-term effectiveness to IFX is currently not feasible. Some genetic variations are proposed as potential biomarkers. AIM: We assessed a set of single nucleotide polymorphisms (SNPs) in genes related to the IFX mechanism of action and the presence of HLA-DQA1 * 05 allele on the primary response and long-term durability in CD patients. METHODS: A multi-centre cross-sectional study of IFX-exposed adult patients with CD was undertaken. Treatment persistence and time to failure were co-primary endpoints. DNA from the 131 patients was genotyped. Association between SNPs and clinical variables with IFX persistence was assessed. RESULTS: Failure to IFX was documented in 65 (49.6%) out of 131 patients. IFX persistence was associated either with carrying the TT genotype in ADAM17 rs10929587 (ORa=0.2; 95%CI=0.1-0.8; p = 0.021), or the CC genotype in SLCO1C1 rs3794271 (ORa=0.2; 95%CI=0.1-0.7; p = 0.008), according to multivariate logistic regression. In contrast, previous bowel resection increased the risk of IFX failure (ORa=2.8; 95%CI=1.1-7.3; p = 0.025). Cox regression analysis confirmed these findings and also identified IL23R rs10489629-TT (HRa 0.41; 95%CI=0.22-0.75; p = 0.004) and concomitant immunosuppressants (HRa 0.46; 95%CI=0.27-0.77; p = 0.003) as protection from IFX failure. However, no association between HLA-DQA1 * 05 allele and persistence of IFX therapy was found, with similar failure rates among carriers and non-carriers (52.8% vs. 47.4%, respectively; p = 0.544). CONCLUSIONS: SNPs rs10929587-TT in ADAM17, rs10489629-TT in IL23R and rs3794271-CC in SLCO1C1, together with no previous bowel surgery and concomitant immunosuppression, were identified as protection from failure to IFX.


Assuntos
Doença de Crohn , Humanos , Adulto , Infliximab/uso terapêutico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Polimorfismo de Nucleotídeo Único/genética , Fármacos Gastrointestinais/uso terapêutico , Estudos Transversais , Resultado do Tratamento , Proteína ADAM17/genética , Receptores de Interleucina/genética , Receptores de Interleucina/uso terapêutico
20.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720499

RESUMO

The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.


Assuntos
Neoplasias , Animais , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Inflamação , Neoplasias/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...